

Phthalate Initiative: Research Concept and plans for future work on Di(2-ethyl)hexyl phthalate (DEHP) and Phthalate Mixtures

Project Leader: Dr. Paul Foster

NTP Board of Scientific Counselors December 6, 2007

Nomination History

- DEHP and other phthalates have been nominated on a number of occasion to the NTP.
- Nominations related to this proposal include:
 - Peroxisome proliferators (initiated in the 1990's)
 - Nomination of DEHP by FDA (2004)
 - NTP- CERHR critical data needs from DEHP monograph (2006)

Background

- DEHP is a ubiquitous environmental contaminant that produces adverse reproductive, developmental and cancer effects in experimental animals.
- Based primarily on NTP bioassays, EPA and IARC designated DEHP as a Category 2 carcinogen in 1992.
- IARC (2000) and the EU (2004) have delisted DEHP as a carcinogen based on mode of action criteria.
 - Liver tumors initiated through a PPARα (peroxisome proliferator activated receptor – alpha) mechanism that has limited relevance to humans.

Background - 2

 More recent lifetime study (Voss et al 2005) in the SD rat found liver tumors

Testicular Leydig cell tumors in Voss study

Liver Tumors in the PPARα KO Mouse (22 months DEHP)

Dose (% in diet)	WILD -TYPE			NULL		
	0	0.01	0.05	0	0.01	0.05
#Animals	24	23	20	25	25	31
Hepatocellular Adenoma	0	2	2	0	1	6
Hepatocellular Ca	0	0	0	1	0	1
Choloangio- Ca	0	0	0	0	0	1
TOTAL	0(0%)	2(8.7%)	2(10%)	1(4%)	1(4%)	8(25.8%)*

Phthalate- induced developmental effects

- Antiandrogenic mode of action.
 - Decreased fetal testicular testosterone levels.
- Male reproductive tract malformations.
- Induction of testis LC tumors and dysgenetic areas after *in utero* only exposure.
- DEHP metabolites in rodent and human (general population) amniotic fluid.
 - MOE ~ 20 (cf 11mg DEHP/kg/d in rat).
- Human exposure data indicates exposure to multiple phthalates that produce developmental effects in rats.
- Recent PFOA study indicates that <u>post-natal</u> developmental effects not seen in PPARα null mouse, but <u>pre-natal</u> effects are noted.

Hypotheses

- That lifetime (perinatal + 2 year) exposure to DEHP would impact the dose response, incidence and/or severity for cancers of the liver and testis (and perhaps pancreas) compared with adult only exposure.
- That PPARα is developmentally regulated in the rat and **unlikely** to contribute to toxicity initiated *in utero* after exposure to DEHP.
- That exposures to mixtures of phthalates, based on their individual potencies, would result in dose addition for cancer (and other) outcomes.

Proposed General Approach

- Undertake a DEHP perinatal cancer bioassay in the Wistar (Han) rat.
 - Sensitive window to phthalates
 - More complete assessment of carcinogenic potential
 - Evaluation of targets other than the liver (eg testis, pancreas)
 - Human fetuses are exposed
- Undertake an ontogeny study of PPARα in the Wistar (Han) rat.
 - When is the receptor first expressed developmentally in phthalate target tissues?
 - Antiandrogenic effects of DEHP (and other phthalates) not found in the mouse i.e. PPARα null mouse approach would not yield useful information.

Proposed General Approach

- Undertake perinatal mixture studies using the TEF approach.
- Such studies would require consideration of:
 - Route of exposure and associated kinetics. Estimates of internal dose in the Wistar (Han) rat during pregnancy and lactation by both dietary and gavage routes.
 - Short-term assays on a number of phthalates (e.g. Dibutyl (DBP), Di-isobutyl (DiBP), butylbenzyl (BBP), Di-isononyl (DINP), DEHP [and Diethyl (DEP]) to develop potency estimates in the Wistar (Han) rat.
 - For in utero exposures, estimates based on fetal testicular testosterone levels.
 - For weanlings, estimates of hepatic peroxisome proliferator activity (e.g. CYP IVA1, Acyl CoA Oxidase etc).
 - It is anticipated that no more than 3 phthalates would be evaluated in any long-term mixture study.
 - Individual TK data on esters selected to go forward to longer term studies.

Potential Significance

- Such studies would provide a cancer hazard assessment for lifetime exposure to DEHP.
 - influence of early exposures on cancer outcome.
- Elucidate the developmental ontogeny of PPARα in the rat and relationship to DEHP-induced cancer (and other developmental toxicity) outcomes.
- Provide toxicity data on important environmental phthalates during lifetime exposures (perinatal + 2 years).
- Provide the critical data to undertake mixture studies using the TEF approach, to inform on potential cumulative and aggregate cancer risk.
- Recent data indicate that because of similar modes of action *in utero*, phthalate esters show dose addition when administered in combination.
 - Appropriate to consider cumulative risk for the class, since human subjects (including fetuses) are typically exposed to multiple phthalates.

Howdeshell et al Tox Sci 99: 190-202 (2007)

GD 14-18; 500 mg/kg/d

